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1 RASTERIZATION
In this section, we detail how our neural geometry fields represen-
tation is well suited to modern rasterization pipelines.

Meshlet rendering. Modern rendering pipelines (e.g. Vulkan, Di-
rectX, Metal) recently introduced mesh shader pipelines for raster-
ization as a general means of producing graphics primitives on the
fly. Whereas traditional rasterization systems would group mesh
data together in order to reduce the number of draw calls, most
mesh shaders partition themesh into clusters of triangles,meshlets,
which can be retrieved and sent out from mesh shaders directly
into rasterization processors. The advantage of this clustering pro-
cess is the improvement in memory access patterns by processing
meshlets that fit into smaller caches.

For procedural geometry, mesh shaders are a way to generate
meshes without any unnecessary inputs to the render pipeline (as
is the case for geometry and tessellation shaders). This is the ap-
proach we take to efficiently rasterizing our representation. We
unpack each patch in a neural geometry field independently as its
own meshlet.

We implement in this pipeline in Vulkan1 and the GLSL program-
ming language. For each patch in a neural geometry field (NGF)
instance, we create a task group, which determines the number of
mesh groups to launch according to the current tessellation reso-
lution. Each mesh group generates a subregion of the vertices and
triangles in a patch, and this is where the neural network is evalu-
ated. Normal vectors can be computed by taking cross products of
the vertex position with respect to the frame buffer, which lets us
perform basic shading operations. Figure 2 demonstrates our im-
plementation of this system, which runs at realtime for reasonable
tessellation resolutions.

1Using the VK_EXT_mesh_shader extension.
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Figure 1: Meshlet rendering pipeline for neural geometry
fields. We instantiate one task group for each patch in a
neural geometry field, which in turn instantiates as many
mesh shader work groups as needed to cover all the tri-
angles necessary for the requested tessellation resolution.
Each mesh shader group is responsible for generating a por-
tion of the patch meshlet by computing the interpolated
patch attributes, encoding and the neural network.

Discussion. Although our rudimentary implementation of NGF
rasterization is already quite performant, we speculate that further
optimizations can result in near sub-millisecond render times for
individual instances. In particular, taking advantage of GPU shared
memory and AI cores (e.g. NVIDIA’s Tensor cores) would likely
bring significant performance boosts to neural network evaluation
times. Furthermore, the layout of the surface as a collection of dis-
joint patches enables culling techniques that can be run in parallel.

2 TEXTURE MAPPING
The lack of texture mapping capabilities for signed-distance fields
is a limitation that prevents them from being widely used in pro-
duction settings. Although our NGF reconstruction pipeline does
not explicitly optimize for or derive a surface parametrization, it
turns out that this is simple to do with the information already
stored with an NGF instance. Recall that our representation con-
tains the configuration of the patches as a quadrilateral mesh Q.

We first obtain a parametrization 𝑓 onQ using standard parametriza-
tion algorithms. For each patch 𝜎 in the NGF, we can find the tex-
ture coordinate 𝑔 of any sample 𝒖 using bilinear interpolation,

𝑔(𝒖) = (1 − 𝒖𝑢 )((1 − 𝒖𝑥 ) · 𝑓 −1 (𝒗00) + 𝒖𝑥 · 𝑓 −1 (𝒗10))
+ 𝒖𝑦 ((1 − 𝒖𝑥 ) · 𝑓 −1 (𝒗01) + 𝒖𝑥 · 𝑓 −1 (𝒗11))

(1)

where 𝒗00, 𝒗01, 𝒗10, 𝒗11 are the corner vertices of 𝜎 . Figure 3 demon-
strates process on the PlancK mesh.
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Figure 2: Realtime rasterization of neural geometry fields. We implemented a realtime rasterizer for neural geometry fields
following the pipeline in Figure 1.The renderer is capable of retrieving normal vectors from the frame buffer withoutminimal
memory footprint, and this enables basic surface shading. The Timings table displays the frame times for the entire pipeline
for various patch counts (top) and tessellation resolutions (left). At a typical tessellation resolution of 𝑘 = 15, our rendering
framerates remain well above 30 frames-per-second. The mesh above is xyz ©Stanford 3D Scanning Repository.
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Figure 3: Texture mapping. Neural geometry fields are
amenable to texture mapping by inhering an arbitrary
𝑢𝑣 parametrization on its base quadrilateral mesh. We
demonstrate this process above on the PlancK mesh. A
parametrization for the base (left) is found using LSCM.
Then, using Equation 1, we transfer themapping onto points
of the neural geometry field. Meshes adapted from PlancK
©MPI.

3 ABLATIONS
Positional encoding. The configuration of frequencies used for

positional encoding leads to notable effects in the resulting repre-
sentation. Ourmethod does well evenwithout positional encoding,
but we find that using some rather than no Fourier features typi-
cally leads to improved performance. Interestingly, we also found
that too many frequencies lead to the opposite effect, often indi-
cated by unstable losses throughout optimization. Ultimately, we
found that 𝐿 = 8 was the optimal number of frequencies, see Fig-
ure 4.

Loss function. Webrieflymentioned thatwe chose an appearance-
based loss as it was more stable than distance-based queries such
as the Chamfer distance. To analyze this, we perform coarse-to-
fine optimization on our representation using our loss function
and the Chamfer distance loss. In Figure 5, we show the Chamfer
loss for both approaches and display the resulting representations.
Our loss function requires fewer iterations to converge in compar-
ison to the Chamfer loss function, even in terms of the Chamfer
metric itself. Furthermore, the representation optimized with the
Chamfer loss contains many visual artifacts, primarily in the form
of a jagged surface. Our loss function, in comparison, is both more
visually and geometrically consistent with the reference.

Smoothing term. We include a smoothing term in the loss in or-
der to distribute the vertices on our representation across its sur-
face. In Figure 6 we demonstrate the effect this has on the vertex
density of the final (uniformly sampled) surface, with and without
this term. We measure vertex density as the minimum distance
from a vertex to any of its one-ring neighbors. Adding the smooth-
ing term indeed relieves the surface of kinks with high concentra-
tions of vertices. For the particular model chosen in Figure 6, the
summed vertex density is 716.82 for the representation without
smoothing and 756.31 for the representation with smoothing.

4 NEURAL METHODS
We briefly compare our method to other neural surface represen-
tations.

Instant NGP. Multi-resolution hash encoding performs well in
representing various neural graphics primitives, including signed-
distance fields. In comparing neural geometry fields to these neu-
ral signed distances fields, we rely on marching cubes to reliably
extract a concrete surface. We provide an amble budget of trian-
gles for this extraction process, more than double that of the mesh
extracted from our corresponding representation.

We depict this comparison in Figure 7, using the Indonesian
model. Against Instant NGP models of varying table sizes, and cor-
responding feature sizes to equalize storage size, ourmethod recov-
ers a more stable surface with significantly fewer visual artifacts.
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Figure 4: Positional encoding. Varying the number of frequencies 𝐿 used in positional encoding affects the fidelity of the
resulting representation. As shown above (top), smaller 𝐿 can still perform well, but still lacks details that additional frequen-
cies can provide at 𝐿 = 8. Too many frequencies, on the hand, can result in the opposite problem. We plot the rendering loss
throughout optimization, for each phase of our pipeline (i.e. for each fixed tessellation resolution). One thus observes that
𝐿 = 8 is an optimal configuration for positional encoding. Model credited to the Stanford 3D Scanning Repository.

It can be presumed that the hash table size at such compression
levels is too small, leading to several collisions, which manifest as
various artifacts.

Neural Subdivision. Unlikemost signed-distance field surface rep-
resentations, neural subdivision directly generates a discrete trian-
gle mesh. Similar to us, the met, the method requires a coarse base
mesh in order to upscale it. The method attempts to generalize its
knowledge of surfaces, thereby being applicable well outside its
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Figure 5: Loss function.We compare the optimization of our representation under our proposed loss function and the Chamfer
distance function. On the left, we plot the Chamfer loss along training duration for each loss. Note that our appearance-based
approach (second from right) requires less time to converge to a visually indistinguishable result from the reference model
(right). Using the Chamfer distance loss, on the other hand, not only leads to a worse Chamfer loss in the end, but the result
is also visually significantly worse than our method (second from left). The mesh is due to Cyberware.

RefeRence W/ Smoothing W/O Smoothing

Figure 6: Smoothing loss term. Above, we demonstrate the impact of including the smoothing term in our objective function.
Regions with more red indicate high vertex density, whereas those with more blue or green indicate lower density. Inclusion
of the smoothing term relieves vertex congestion, especially on the waist and face of the statue. The mesh is taken from
Indonesian Statue ©peel3d.

trained domain. However, this is also its major drawback, as it of-
ten fails to recover higher frequency details on large surfaces.

To perform the comparison, we train a neural subdivisionmodel
on a dataset consisting of only the primary model, shown in Fig-
ure 8. The primary model is decimated to 1000 faces to serve as the
coarse base mesh that the model operates on. To match the storage
budget of our representation, we increase the width of the network

layers used to 48 neurons, bringing the total size to 138 kilobytes.
We run our method with 250 patches with the usual configuration,
with a total cost of 85 kilobytes.

Since neural subdivision performs local convolutions on the coarse
base mesh, it is unable to recover sharp details on surfaces. In Fig-
ure 8, for example, it cannot infer the structure of the eyes and lips
of the model. On the hand, since our method is trained thoroughly
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Configuration 2.5K Patches T = 211, F = 8 T = 212, F = 4 T = 213, F = 2

Render 1.84 · 10−4 1.64 · 10−2 1.65 · 10−2 1.64 · 10−2

Normal 6.84 · 10−3 8.22 · 10−1 8.24 · 10−1 8.23 · 10−1

Chamfer 7.28 · 10−6 2.99 · 10−5 7.06 · 10−6 7.74 · 10−6

Figure 7: InstantNGP.Above,we compare neural geometry fieldswithmeshes reconstructed from InstantNGP signed-distance
fields.We evaluate this comparison at multiple configurations with similar sizes to our representation, and extract the surface
using marching cubes. Although the distribution of vertices on the results of Instant NGP can envelop the target surface, they
are often noisy in comparison to our method. Hence, whereas the Chamfer distances may be of similar magnitude, the visual
metrics indicate that our method is more suitable for compact surface representation.This model is from Indonesian Statue
©peel3d.

to match the surface and its higher frequency features, it is able to
reconstruct the model much better and at a fraction of the storage
cost incurred by neural subdivision.

5 ADDITIONAL RESULTS
Figures 9-14 show additional results of reconstructed neural geom-
etry fields, along with the results of baselines QSlim and nvdiff-
modeling for comparison. At high compression rates, we observe

that our method is significantly better at preserving sharp edges
and high frequency surface details, see Figures 11 and 13. A limi-
tation of our method, as demonstrated in Figure 12, is that for ex-
treme compression rates (e.g. low patch counts), the surface parti-
tioning step of our method may fail to procure a sufficient number
of patches. This is a result of the simplification process, whereby a
majority of the remaining triangles are non-manifold, and cannot
easily be combined into quadrilaterals.
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Figure 8: Neural Subdivision. We compare our method to Neural Subdivision with the model above (left). Despite operating
on a smaller coarse mesh and incurring a smaller storage overhead, our method is capable of recovering sharper details. Even
when overfit to a single mesh, neural subdivision struggles to learn the higher frequency details of the surface, such as the
eyes and lips of the model. In the views above, we run neural subdivision thrice (for a combined subdivision factor 8) on a
coarse subdivided mesh with 1000 faces, and run our method using only 250 patches at tessellation resolution 𝑘 = 8 and 16.
This mesh is taken fromThingi10K.
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Figure 9: NefeRtiti. Our method obtains an accurate representation of the face details in these while maintaining a notable
compression rate. The low vertex count limitation QSlim and nvdiffmodeling inhibits them from preserving key features
like the eyes and, nose and crown indentations. Above model is NefeRtiti ©Berlin Egyptian Museum.
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Figure 10: ARmadillo. Even for relatively small models, our method outperforms the baseline methods and is able to recon-
struct sharper features, such as the legs and collarbone of this armadillo. Above model is ARmadillo ©Stanford 3D Scanning
Repository.
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Figure 11: DRagon.With a sufficient amount of patches, neural geometryfields have the capacity to closelymatch the reference
surface. In the case of this dragon mesh, the result of our method captures the finer folds of the surface, even those which
are sometimes occluded. Due to their limited vertex budget, the baseline methods yield an over smoothed reconstruction.The
model above is taken fromThingi10K.
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Figure 12: MetRatRon. At modest compression rates, the baselines fail to capture the sharp edges of this high genusmesh. On
the other hand, our optimization pipeline results in a reconstruction that preserves such edges in a compact manner. However,
at extreme compression rates, the simplification process of our surface partitioning procedure fails to yield a sufficient number
of useful patches, in which case our pipeline fails to successfully converge. The mesh above is taken fromThingi10K.
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Figure 13: BuddHa. Even at such a high compression rate, our method is still able to grasp the intricate folds on the statue’s
cloth. The baseline methods, on the other hand, struggle to grasp the sharp folds on the fabric. One notes, however, that our
result at the maximal patch counts performs worse than a lower patch count result. We observed that this is due to large
sections of overlapping geometry in the extracted mesh, which is not easily combatted by our current loss function. Above
model is BuddHa ©Stanford 3D Scanning Repository.
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Figure 14: Lucy. Our method is able to recover the fine details of this statue, such as the fingers on the hand and the torch.
The baselines, on the other hand, struggle with this, and generate overly smoothed results. Above model is Lucy ©Stanford 3D
Scanning Repository.
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