
Neural Geometry Fields For Meshes
Venkataram Sivaram

ves223@ucsd.edu
University of California San Diego

USA

Ravi Ramamoorthi
ravir@cs.ucsd.edu

University of California San Diego
USA

Tzu-Mao Li
tzli@ucsd.edu

University of California San Diego
USA

RefeRence
15.5 MB

NGF (Patches)

NGF (OuRs)
324 KB

50× Compression

Q
Sl
im

16
1.
31

N
vd

if
fm

od
el
in
g

20
2.
28

In
st
an

t
N
G
P

60
.7
2

N
G
F

7.
70

R
ef
eR
en
ce

C
ha

m
fe
r
(×

10
6
)

Figure 1: Neural Geometry Fields. We present a mesh-based neural representation for discrete surfaces that enjoys the ben-
efits of both classical meshes (UV-parametrizable) and neural representations (compact). Given a target surface (Reference),
we partition it into a set of quadrangular patches (NGF Patches). We then displace each patch with a coordinate neural net-
work, and extract a standard triangle mesh from the patches and their displacement (NGF). An important application of our
representation is mesh compression. On the right, we show comparison of discrete surfaces compressed by a classical mesh
simplification algorithmQSlim [Garland andHeckbert 1997], an appearance-drivenmesh processingmethod Nvdiffmodeling
[Hasselgren et al. 2021], a neural implicit surface Instant NGP [Müller et al. 2022] (using marching cubes with similar triangle
count to ours), and finally our representation (Ours). Allmethods are runwith the same storage constraints as ourmethod, and
we show the Chamfer error next to the method. Despite the high compression rate of 50×, our method is capable of achieving
significantly lower error and preserves visual appearance. The dragon model is courtesy of Thingi10K.

ABSTRACT
Recent work on using neural fields to represent surfaces has re-
sulted in significant improvements in representational capability
and computational efficiency. However, to our knowledge, most
existingwork has focused on implicit representations such as signed
distance fields or volumes, and little work has explored their appli-
cation to discrete surface geometry, i.e., 3D meshes, limiting the
applicability of neural surface representations.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07.
https://doi.org/10.1145/3641519.3657399

We present Neural Geometry Fields, a neural representation for
discrete surface geometry represented by trianglemeshes. Our idea
is to represent the target surface using a coarse set of quadrangular
patches, and add surface details using coordinate neural networks
by displacing the patches. We then extract a traditional triangular
mesh from a neural geometry field instance by sampling the dis-
placement. We show that our representation excels in mesh com-
pression, where it significantly reduces the memory footprint of
meshes without compromising on surface details.

https://doi.org/10.1145/3641519.3657399

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Venkataram Sivaram, Ravi Ramamoorthi, and Tzu-Mao Li

CCS CONCEPTS
•Computingmethodologies→Mesh geometrymodels;Neu-
ral networks.

KEYWORDS
Neural representation, mesh simplification, mesh compression

ACM Reference Format:
Venkataram Sivaram, Ravi Ramamoorthi, and Tzu-Mao Li. 2024. Neural Ge-
ometry Fields For Meshes. In Special Interest Group on Computer Graph-
ics and Interactive Techniques Conference Conference Papers ’24 (SIGGRAPH
Conference Papers ’24), July 27-August 1, 2024, Denver, CO, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3641519.3657399

1 INTRODUCTION
Neural surface representations have recently risen in popularity
due to their advantages in information bandwidth and storage com-
pactness, and compatibility with gradient-based optimization. The
primary representation mechanism for recent works have been im-
plicit functions such as signed distance fields [Park et al. 2019],
occupancy grids [Mescheder et al. 2019] or volumes [Wang et al.
2021]. However, to use these representations in downstream tasks
like scene modeling, surface texturing, or photorealistic rendering,
an additional step is typically taken to convert these representa-
tions to meshes. This conversion step requires additional process-
ing (e.g. marching cubes) and strips away the compact nature of
these neural representations in favor of the more friendly meshes.
We present a neural representation which foregoes this processing
and storage overhead by directly generating meshes rather than
implicit functions. As such, our representation is particularly suit-
able for mesh compression.

The primary challenge with representing meshes with neural
graphics primitives is that additional connectivity informationmust
be constructed for surfaces with different polygon schemes and
topology. It is challenging to implement a gradient descent algo-
rithm for optimizing connectivity data, and correspondingly there
has been little previous work to our knowledge on representing
meshes with neural networks. Fortunately, previous work on ge-
ometry images [Gu et al. 2002] unveils a regular image-based scheme
that can be used to represent discrete meshes. We leverage this
finding, and demonstrate that using a lightweight multilayer per-
ceptron (MLP) to displace a coarse mesh can achieve state-of-the-
art compression and representation of mesh geometry.

Specifically, we present a Neural Geometry Fields representa-
tion that consists of a set of quadrangular patches, which captures
the shape of the given surface. Each patch is parametrized easily
by construction, which allows us to attach a trainable feature field
on the patches. We then feed the features to an MLP which out-
puts the displacement of the patch. To obtain a traditional mesh
from our representation for both training and actual uses, we sam-
ple vertices from each patch and construct triangles within each
patch. We then use an appearance-based loss [Hasselgren et al.
2021] to optimize for the patch vertices, the MLP weights, and the
features. Figure 2 illustrates this process. We show that our repre-
sentation can preserve details of surfaces even under significant
compression rate, compared to both traditional mesh simplifica-
tion and neural implicit surfaces (see Figure 1).

We present the following contributions:

(1) Combining surface partitioning and neural signal represen-
tations to forge a neural geometry fields representation for
discrete surfaces.

(2) A coarse-to-fine appearance-driven optimization pipeline for
overfitting Neural Geometry Fields to a particular reference
mesh.

(3) A scheme for state-of-the-art mesh compression using our
novel representation.

2 PREVIOUS WORK
Our work builds on classical mesh compression, subdivision tech-
niques, geometry images and neural graphics primitives.

Classical mesh compression. We refer the readers to Maglo et al.
[2015]’s survey for a comprehensive introduction. The most di-
rect of the mesh compressionmethods applies single-rate compres-
sion techniques to reduce bit rates for vertex connectivity [Deer-
ing 1995; Gumhold and Straßer 1998; Touma and Gotsman 1998]
and vertex data [Lee and Ko 2000; Taubin and Rossignac 1998].
Such methods are now incorporated into industry standard, e.g.
Draco [Galligan et al. 2018]. These methods can be applied to our
technique to further compress the patch representation. Neural ge-
ometry fields effectively act as a variable-rate compression on dis-
joint sections of the surface.

Other methods analyze the surface intrinsic information, using
the mesh Laplacian [Lescoat et al. 2020] or error metrics [Cohen
et al. 1998; Garland and Heckbert 1997; Hoppe 1996], to reduce the
number of vertices or faces necessary for representing the shape of
a reference mesh. Yet another class of method uses inverse render-
ing to find simpler meshes that render to the same images as the
target surface [Hasselgren et al. 2021]. We build on both classes
of methods: we apply QSlim [Garland and Heckbert 1997] to ob-
tain a coarse representation of the target mesh that preserves the
topology, and apply inverse rendering to refine our neural repre-
sentation. Fundamentally, however, these methods build a lossy
reconstruction of a target surface due to their sole use of polygo-
nal meshes. By contrast, our representation preserves topological
information using a coarse base mesh, while adding more details
using coordinate neural networks.

Subdivision techniques. Subdivision surfaces splits polygonal faces
into finer elements [Catmull andClark 1978; Dyn et al. 1990; Hoppe
et al. 1994; Loop 1987; Stam 1998]. In effect, this increases the ver-
tex resolution of the mesh, and can be paired with displacement
mapping to add details. In the context of mesh compression, a
fixed subdivision schemewithout displacementmapping [Lee et al.
2000] often leads to overly smooth reconstructions as a result of in-
terpolating data with lower-order polynomials.

Neural networks have been applied to subdivision surfaces [Chen
et al. 2023; Liu et al. 2020b] to achieve better matching results than
classical subdivision. To extract a triangle mesh from neural sub-
division surfaces, these methods rely on an expensive graph neu-
ral network. In contrast, our method sticks to simple interpolation
and matrix multiply operations, and as a result is also efficient to
evaluate interactively.

https://doi.org/10.1145/3641519.3657399

Neural Geometry Fields For Meshes SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

(Section 3.1) (Section 3.2) (Section 3.3)

SuRface PaRtitioning

Target surface Patches Displacements Sampled mesh

NGF

Mesh ExtRaction InveRse RendeRing

Figure 2: Overview. We overfit a neural geometry field representation to a specific target surface. We first pre-process the
targetmesh to obtain easily parametrizable patches, which enable the use of coordinate neural networks (Section 3.1).Then, we
instantiate a neural geometry fieldwith the patches and optimize the complete representation by repeatedly sampling triangle
meshes (Section 3.2) and minimizing an inverse rendering loss (Section 3.3). The Einstein model is credited to Thingi10K.

Geometry images. The concept of representing surfaces as im-
ages storing vertex information at each pixel was first introduced
with geometry images [Gu et al. 2002]. Geometry image construc-
tion cuts the surfaces so that they can be easily mapped to pla-
nar images, and then uniformly samples the surface to record 3D
positions on the images. The mesh can then be reconstructed im-
plicitly by constructing quadrilaterals at each (2 × 2) set of pixels.
Additionally, the constructed image can itself be compressed using
traditional image compression techniques to reduce its footprint.

Our representation is derived from these works, in the sense
that each patch operates similarly to a geometry image. Novel to
our method is the introduction of a neural network that implicitly
generates the vertices of the patches.This circumvents the problem
of sampling and packing patches into texture atlases.

Neural graphics primitives. Coordinate neural networks have been
used for representing 2D images, 3D scenes, and surface geome-
try [Martel et al. 2021; Mildenhall et al. 2020; Park et al. 2019; Tan-
cik et al. 2020; Xie et al. 2022]. Previous works have shown that
neural fields can represent high-fidelity signals with little use of
memory. We build on the recent advances in neural fields and en-
code surface displacements using a feature field [Müller et al. 2022]
followed by a shallow neural network.

Work so far in implicit surface representation has focused pri-
marily on using neural networks to represent signed distance func-
tions or volumetric occupancy grids [Mescheder et al. 2019; Park
et al. 2019; Takikawa et al. 2021; Wang et al. 2021]. To improve
computation and memory efficiency, hierarchical 3D spatial data
structures are often used for storing features [Martel et al. 2021;
Müller et al. 2022; Takikawa et al. 2021]. However, 3D voxels be-
come inefficient when considering functions on surface manifolds,
and primitives embedded within the surface itself would form a
more ideal partitioning. In our method, we rely on a quadrilateral
mesh to form the surface partition, as quadrilaterals provide sim-
ple and efficient parametrization domains for interpolation. Our
meshes lead to more compact and efficient data structures for stor-
ing feature fields for surfaces.

Table 1: Notation. Table of notation used in describing our
method.

Symbol Definition
Γ Target surface
Λ Piecewise continuous surface defined by an NGF
Σ Base surface
Ψ Feature field on Σ
P A partition of Σ into patches
𝜎 A quadrilateral patch in P
𝒗 or 𝒗𝑖 𝑗 Arbitrary vertex or corner vertex
𝒇 or 𝒇𝑖 𝑗 Arbitrary feature vector or corner feature vector
𝜃 MLP parameters
𝒖 Uniform sample in [0, 1]2

3 NEURAL GEOMETRY FIELDS
As shown in Figure 2, our pipeline uses a neural network to contin-
uously displace a base mesh Σ into the target surface Γ. We achieve
this by first partitioning the surface into patches, and construct a
continuous and trainable feature field Ψ : Σ→ R𝐹 , where each fea-
ture consists of 𝐹 real components (Section 3.1). Next, we extract
a traditional triangle mesh by sampling on the patches to obtain
features, and feeding these features to along with 3D positions to
a neural network to evaluate the displacement (Section 3.2). We op-
timize the feature fields and patches using a coarse-to-fine inverse
rendering algorithm (Section 3.3). See Table 1 for an overview of
the notation used in the subsequent discussion.

3.1 Surface Partitioning
Patches. To construct a feature field on the base mesh Σ, we

build a partition P of disjoint quadrilateral patches 𝜎 whose union
covers Σ. We specifically use quadrilaterals as they embed a sim-
ple interpolation domain. Although triangles are also simple in this
regard, fewer quadrilaterals are needed in general to cover the sur-
face.

Formally, each patch 𝜎 must be diffeomorphic to the unit square
domain, so that it can be represented with four corner vertices,

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Venkataram Sivaram, Ravi Ramamoorthi, and Tzu-Mao Li

TaRget Simplified Patches
QSlim Triangle Pairing

Figure 3: Surface Partitioning. Constructing the partition P
of patches. The target surface Γ is first simplified using QS-
lim to reduce its polygon count. Adjacent triangles are then
paired to formquadrilaterals, which builds the quadrilateral
mesh Q representing P.

𝒗00, 𝒗10, 𝒗01, 𝒗11, and a sample 𝒖 ∈ [0, 1]2 using a bilinear interpo-
lation as follows:

𝜎 (𝒖) = (1 − 𝒖𝑢)((1 − 𝒖𝑥) · 𝒗00 + 𝒖𝑥 · 𝒗10)
+ 𝒖𝑦 ((1 − 𝒖𝑥) · 𝒗01 + 𝒖𝑥 · 𝒗11)

(1)

Likewise, with four feature vectors 𝒇00,𝒇10,𝒇01,𝒇11,we can define a
smooth feature field within 𝜎 using the same bilinear interpolation
formula:

Ψ(𝒖) = (1 − 𝒖𝑢) ((1 − 𝒖𝑥) · 𝒇00 + 𝒖𝑥 · 𝒇10)
+ 𝒖𝑦 ((1 − 𝒖𝑥) · 𝒇01 + 𝒖𝑥 · 𝒇11)

(2)

These formulations are visualized in Figure 4 (b).

Surface partitioning. We represent the base surface Σwith a non-
degenerate quadrilateralmeshwith verticesV = ∪𝜎 {𝒗00, 𝒗10, 𝒗01, 𝒗11}
and facesQ. A shared edge between two quadrilaterals corresponds
to a shared continuous boundary amongst two patches. On the
other hand, we can have a patch that shares no edges with oth-
ers, which allows us to represent non-manifold base surfaces Σ.
We likewise assign each vertex in V with its corresponding fea-
ture in F = ∪𝜎 {𝒇00,𝒇10,𝒇01,𝒇11}, and the resulting feature field Ψ
will inherit the same discontinuities as Σ.

The evaluation of our surface involves using Σ as a base mesh
that is later refined by a neural network MLP𝜃 . The resulting sur-
face necessarily has the same topology as Σ, including its topo-
logical features such as holes and intersections. In the interest of
surface compression, we wish to store a minimal amount of infor-
mation for the base quadrilateral mesh. Thus, a method for con-
structing the base mesh is ideally topology preserving, even at low
quadrilateral counts |Q|. To do this, we 1. simplify the mesh repre-
sented by Γ using QSlim, as it is robust and scalable, and 2. greed-
ily combine adjacent triangles to form near-rectangular quadrilat-
erals, removing non-manifold triangles in the process. Figure 3
demonstrates this process on a sample model. Note that this pro-
cedure can handle non-manifold input surfaces.

3.2 Mesh Extraction
In this section, we describe how we sample a mesh from a neural
geometry field instance so that we can perform inverse rendering
to optimize our representation.

Equipped with the base mesh and a feature field, we can build
a piecewise continuous surface Λ by concatenating patches dis-
placed by a neural network. First, we combine the vertex position
and feature with an encoding enc derived from positional encod-
ing [Mildenhall et al. 2020]:

enc(𝒗,𝒇) =
(
sin(20𝒗), cos(20𝒗), . . . , sin(2𝐿𝒗), cos(2𝐿𝒗),𝒇

)
(3)

The number of levels is controlled by a hyperparameter 𝐿. Then, at
each patch 𝜎 and sample 𝒖, the displaced surface coordinate on Λ
is

Λ(𝒖) = 𝜎 (𝒖) +MLP𝜃 ◦ enc(𝜎 (𝒖),Ψ(𝒖)) . (4)

We extract the resulting representation as a discrete mesh by
sampling 𝒖 on each patch. In practice, this is done as follows:

(1) Tessellate each patch by sampling 𝒖 in [0, 1]2 with𝑘 samples
along each dimension, for a total of 𝑘2 samples per patch.
(Figure 4 (a))

(2) Generate the corresponding vertices and features for each
sample according to Equations (1) and (2). (Figure 4 (b))

(3) Compute the displaced vertex by encoding and applying the
neural network as in Equation (4). (Figure 4 (c) and (d))

(4) Generate connectivity information independently for each
patch to obtain the connectivity for the extracted surface.
(Figure 4 (e))

Locally, at each patch 𝜎 , we perform step (4) by laying out the ver-
tices in a grid arrangement and applying a triangulation similar to
height fields. The resulting mesh, when combined across multiple
patches, results in a semi-regular mesh.

Jittering. During optimization, we aim to thoroughly sample each
patch so that the neural geometry field obtains a better reconstruc-
tion of the target surface. We achieve this by randomly jittering
uniform samples during mesh extraction by 𝒖 ∼ 𝒖̂ + D(𝜔), where

𝒖̂ =
⟨𝑖, 𝑗⟩
𝑘 − 1 for 0 ≤ 𝑖, 𝑗 ≤ 𝑘 − 1 (5)

are the original uniform samples and D(𝜔) uniformly samples
points in the origin-centered disk with radius 𝜔 . Note that to up-
hold the structure of the jittered mesh (i.e. prevent triangle fold
overs), it is necessary that 𝜔 be less than 0.5/(𝑘 − 1). To preserve
boundaries, we additionally enforce 𝜔 = 0 when 𝒖̂ is a boundary
sample.

Jittering provides richer gradient signals to the optimization by
virtue of better exploring the surface points of each patch. This is
especially effective in regions of the neural geometry field where
the vertex count is limited (i.e. with low patch counts). In Figure 5,
while both strategies can coarsely recover the features of the ref-
erence, uniform sampling produces a noisier result compared to
jittered sampling. As such, jittering can be thought of as a regular-
ization mechanism for the reconstructed surface.

Neural Geometry Fields For Meshes SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Patch 𝜎 Tessellating (a) Displaced vertices (d) Discretization (e)
MLP evaluation (c)

𝒖 𝜎 (𝒖) Ψ(𝒖)

enc(𝒗,𝒇)

𝒗00,𝒇00 𝒗10,𝒇10

𝒗11,𝒇11𝒗01,𝒇01

Interpolation and encoding (b)

Figure 4: Mesh Extraction. Pipeline flow of a single patch during mesh extraction, where a traditional mesh is derived from
our representation for use in optimization. A patch 𝜎 is uniformly tessellated, and corresponding vertices and features are
computed. After positional encoding and concatenation, we evaluate the neural network to obtain the vector displacement on
𝜎 . Applying this displacement yields the displaced patch vertices on Λ(𝜎), and finally we create a discretized mesh with a fixed
scheme. Repeating this process over all patches constructs the full surface Λ.

RefeRence JitteRed UnifoRm

Figure 5: Sample Jittering. Jittering uniform samples dur-
ing mesh extraction helps to regularize the optimization
of a neural geometry field. Above, we demonstrate its im-
pactwhen learning surfaces at lowpatch counts (10 patches),
where omitting jittered results in a rougher surface.

Our completed mesh extraction algorithm is shown in Algo-
rithm 1. In Lines 8-12, we generate the jittered samples for the
chosen patch 𝜎 and evaluate its corresponding world space loca-
tion. Then, through lines 2-5, we discretize the sampled vertex col-
lection into triangles by splitting the quadrilaterals of each (2× 2)
section of vertices. We find that making a deliberate choice to split
each quadrilateral along its shortest diagonal brings improves the
final quality of the reconstruction. Finally, in lines 15-19, we repeat
the sampling and discretization steps for each patch, and combine
the resulting geometry from each to construct the full mesh.

3.3 Optimization
Inverse rendering. Our optimization pipeline is a rasterization-

based inverse rendering process that fine-tunes the appearance of
our representation’s surface to that of the target surface. We find
that an appearance-based method for optimization is more stable
than using distance-based methods such as Chamfer distance or
signed distance field queries. To stabilize the training process, we
apply a coarse-to-fine approach using inverse rendering. At a par-
ticular tessellation resolution, 𝑘, the mesh𝑀 will have a fixed con-
nectivity defined by the triangulation of𝑀 . Its vertex positions, on
the other hand, are differentiable with respect to the patch corners
V and features F , as well as the neural network parameters 𝜃 .This

Algorithm 1: Triangle mesh extraction on Λ

Input: Tessellation resolution 𝑘
Input: Neural geometry field Λ

1 Function Discretize(V, k):
2 𝑇 ← []
3 𝑉grid ← 𝑉 .reshape (𝑘, 𝑘, 3)
4 for Sections [[𝑉𝑎,𝑉𝑏], [𝑉𝑐 ,𝑉𝑑]] in𝑉grid do

// Triangulate the quadrilateral
5 𝑇 .add (SplitQuad (𝑉𝑎,𝑉𝑏 ,𝑉𝑐 ,𝑉𝑑))
6 return𝑇

7 Function Tesselate(𝜎 , k):
8 𝑉 ← []
9 for 𝒖̂ ∈ UniformSamples(𝑘) do

// Jittering the uniform samples (Equation 5)
10 𝒖 ← 𝒖̂ + IsInteriorSample (𝒖) · D (𝜔)

// Evaluate the neural geometry field (Equation 4)
11 𝑉 .add (Λ(𝒖))
12 𝑇 ← Discretize (𝑉 ,𝑘)
13 return𝑉 ,𝑇

14 Function ExtractMesh(Σ, k):
15 𝑉 ← [], 𝑇 ← []
16 for 𝜎 ∈ P do
17 𝑉𝜎 , 𝑇𝜎 ← Tesselate (𝜎,𝑘)
18 𝑉 .add (𝑉𝜎)
19 𝑇 .add (𝑇𝜎)
20 return Mesh(𝑉 ,𝑇)

means that inverse rendering can indeed produce useful gradients
for optimizing our representation.

Objective function. In contrast with conventional inverse ren-
dering problems, our pipeline has access to various attributes of
the reference surface. Of these, we use only the surface normal
vectors.

With the sampled mesh, differentiable normal vectors can be
evaluated from vertex cross products, as is typical. During raster-
ization, these normal are interpolated to generate the normal vec-
tor frame buffersN(·) for both the reference and sampled surface.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Venkataram Sivaram, Ravi Ramamoorthi, and Tzu-Mao Li

Using these buffers, an image-space loss can be defined. Addition-
ally, to promote an even vertex distribution along the surface, we
include a Laplacian term. The unified objective function we use is

L =
1
|N (·) | ∥N (Γ) − N (Σ)∥1 +

1
|𝑉 | ∥𝐿𝑉 ∥1, (6)

where ∥ · ∥1 is the 𝐿1 metric and 𝐿 is the (uniform) mesh Laplacian
of𝑀 . Note that for the smoothing term, we apply the Laplacian on
the uniformly sampled vertices.

Camera arrangement. As the reference surface can have arbi-
trary topology, it is crucial to have a set of views thoroughly cover
its surface area. To distribute the cameras, we cluster the triangles
of the reference by geodesic distance. We then construct a camera
for each cluster, looking towards the centroid of the cluster. This
approach is both efficient and scalable with respect to the number
of cameras to instantiate. Additionally, to capture occluded geom-
etry, we rasterize multiple depth layers using depth peeling.

General configuration. As a preprocessing step to our optimiza-
tion pipeline, we normalize the coordinates of the reference mesh.
We run the pipeline for tessellation resolutions 𝑘 ∈ {4, 8, 12, 16},
typically using 200 cameras. During rendering, we use nvdiffRast
to rasterize 10 views in a batch using 3 depth layers each. Our neu-
ral network consists of two hidden layers, each with 64 neurons,
with 𝐿 = 8 levels for positional encoding, and a feature vector size
of 𝐹 = 20. Lastly, we use a fixed learning rate of 10−3 with an
ADAM optimizer [Kingma and Ba 2015].

4 RESULTS
We test our method on meshes with various surface and topolog-
ical features. In Table 2, we display models with varying storage
size, genus, and surface details. Models like DRagon exhibit hard to
reach surfaces that are hidden from ordinary inspection; Einstein
and SKull both contain immense surface details; MetatRon and
other high genus meshes are tricky for appearance-based methods
to reconstruct due to frequent occlusions in camera views.

In our results, we evaluate how well resulting meshes compare
with the target mesh, both visually and geometrically. We use the
render image loss, where the surface is shaded with an environ-
ment map, and the Chamfer loss, using the vertices sampled from
our representation. For these comparisons, we forego jitteringwhen
extracting final meshes.

Additional results, notably rasterization,𝑢𝑣-parameterization and
comparison to other neural methods, are shown in the supplemen-
tary material. We urge the reader to take a look into these results
to further understand the capabilities of our representation.

4.1 Compression
We evaluate our method for mesh compression against previous
works. In particular, we compare against QSlim [Garland andHeck-
bert 1997] and nvdiffmodeling [Hasselgren et al. 2021], which rely
on surface extrinsic and visual metrics, respectively. In particu-
lar, we use the symmetric Chamfer distance to compare geomet-
ric quality, and use mutli-view rendering for visual quality. For
rendering, we use a random arrangement of camera views which

are distinct from the training views, and shade using spherical-
harmonics-based environment mapping [Ramamoorthi and Han-
rahan 2001].

Both methods have shown strong results in compression. The
storage for our representation consist of the base quadrilateralmesh
and features (V, F ,Q), as well as the MLP, 𝜃 . All primitive ele-
ments are stored with 32 bits. The target surface and the outputs
for each baseline are all meshes, so we calculate their storage costs
using only the vertex data and connectivity information.

Our representations are optimized at increasing patch counts
while fixing the tessellation resolution to 𝑘 = 16. The representa-
tions require different amounts of storage, and to provide a fair
comparison, we generate the baseline results at similar sizes. Fig-
ure 7 demonstrates the result of our method on the XYZ, Einstein,
and Ganesha models, showing sections of the surface in insets for
each method as well as plotting error metrics for each representa-
tion with respect to the compression ratio.

For these models, neural geometry fields consistently outper-
forms the baselines across all size variations of our methods. In the
xyz model, for example, our method is better able to recover the
scales on the dragon whereas QSlim and nvdiffmodeling struggle
due to limited vertex count.

In Table 2, we show further results of our method with others.
Our method scales well with the number of patches we partition
the reference into. Even at its highest quality, at 2.5K patches, our
representation remains under a megabyte in storage.

Additionally, in Figure 6, we compare our method to Draco
[Galligan et al. 2018], a state-of-the-art mesh compression method
[Doumanoglou et al. 2019] which performs compression of both
vertex data and connectivity. At high amounts of quantization, our
method still outperforms this baseline in terms of visual metrics.
We observe that the advantage of ourmethod overDraco correlates
with the size of the reference mesh. In such cases, neural geometry
fields can adaptively allocate primitives for particular regions of
the surface, while quantization methods sacrifice vertex precision
for the preservation of topology.

4.2 Evaluations
Tessellation. Duringmesh extraction, we permit arbitrary tessel-

lation rates. In Figure 8, we compare the quality of these meshes
with respect to their tessellation resolutions. While the geometric
quantities show steady improvements with increasing tessellation,
the visual metrics plateau around 𝑘 = 16. We thus cap our pipeline
to this resolution to minimize additional computational and mem-
ory overhead during optimization.

Features. Our method is flexible with respect to the number of
feature vector dimensions 𝐹 . The primary trade-off lies between
quality and storage overhead. As shown in Figure 9, more features
lead to improved reconstruction. However, as the storage cost grows
linearly with the feature size, this improvement eventually dimin-
ishes. We find that a feature size of 𝐹 = 20 strikes a good balance
between quality and storage size; with 1000 patches, the total stor-
age cost typically remains below 200 kilobytes.

Neural Geometry Fields For Meshes SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Table 2: Mesh Compression (Pt. 1). Comparison of our method with the baselines at varying patch counts. We evaluate each
method using a multi-view rendering loss (left columns, scaled by 102) and the Chamfer distance (right columns, scaled by
105). Our method outperforms the baselines consistently throughout models with varying features, including high triangle
count and genus. Furthermore, the quality of our method scales as we increase its allocation of patches for reconstruction. In
the following table, Lod refers to the number of primitives (patches or triangles) and overall size of the representation, TRis
refers to the number of triangles in the reference mesh, and Nvdiff is shorthand for nvdiffmodeling. The models DRagon,
Einstein, andMetRatRon are fromThinkg10K; BuddHa, ARmadillo, Xyz and Lucy are courtesy of the Stanford 3D Scanning
Repository; GanesHa credited to peel3d.

Lod DRagon Ganesha Buddha Einstein ARmadillo MetatRon Xyz Lucy
Size 15.46 MB 41.03 MB 18.66 MB 14.73 MB 1.72 MB 2.38 MB 4.29 MB 1.72 MB

TRis 900.5 K 2.4 M 1.1 M 858.0 K 100.0 K 138.4 K 249.9 K 100.0 K

OuRs

100 / 65 KB 23.18 47.26 8.72 1.42 5.65 1.94 13.03 9.16 5.01 6.48 - - 8.37 7.60 5.97 8.83
250 / 80 KB 16.07 11.46 6.39 0.82 2.76 15.60 10.78 4.00 3.44 2.85 8.20 9.22 6.84 2.77 4.00 3.62
1.0K / 160 KB 9.54 1.42 0.30 3.52 1.48 1.10 6.49 1.34 2.38 1.66 4.62 3.18 4.17 0.94 2.51 1.97
2.5K / 320 KB 6.76 0.74 1.66 0.26 0.74 0.25 4.78 0.77 1.93 1.43 3.74 2.59 3.36 0.65 1.86 1.55

QSlim

4K / 65 KB 23.42 39.92 21.75 44.77 23.75 46.80 24.57 76.61 19.10 63.47 15.25 35.92 12.95 32.37 22.58 63.99
5K / 80 KB 21.26 32.25 20.25 42.22 23.75 46.80 23.02 62.39 17.11 52.56 14.22 29.68 12.16 26.01 21.73 53.50
10K / 160 KB 17.53 15.93 14.83 37.03 12.38 6.85 19.77 32.30 13.14 27.60 10.27 15.73 9.78 13.38 17.70 29.46
19K / 320 KB 14.93 8.21 9.68 20.72 6.15 2.66 15.96 16.13 9.39 14.95 7.19 8.48 7.56 6.76 13.83 16.30

Nvdiff

4K / 65 KB 21.27 57.02 17.31 29.93 25.31 52.22 23.81 83.85 18.95 82.51 14.65 44.20 12.52 40.65 22.28 100.76
5K / 80 KB 19.83 45.58 15.26 28.97 25.31 53.16 23.94 71.41 16.86 76.56 13.85 36.54 11.39 33.49 21.56 89.16
10K / 160 KB 17.32 24.58 10.58 26.87 12.09 7.18 18.25 38.87 10.14 39.02 10.31 18.81 9.70 18.30 17.04 45.47
19K / 320 KB 14.13 11.46 8.45 19.65 5.74 3.04 15.32 20.46 7.77 20.71 8.90 10.03 8.32 9.96 13.21 21.37

Buddha
RefeRence NGF (1K patches) DRaco (8 bits) DRaco (10 bits)

Render 1.75 · 10−4 2.13 · 10−3 5.66 · 10−4

Normal 5.90 · 10−3 7.04 · 10−2 1.87 · 10−2

Size / Ratio 156 KB / 120 393 KB / 50 601 KB / 30

Figure 6: Mesh Compression (Pt. 3). We compare neural ge-
ometry fields to DRaco [Galligan et al. 2018] which relies on
data quantization. In this particular example, with the Bud-
dHa mesh, our method is notably more compact than this
state-of-art compression method, even when using heavy
amounts of quantization. Furthermore, our representation
maintains visual similarity with the reference, whereas nu-
merous visual artifacts can be seen from the results of Draco.
For our method, we use 1K patches with the default config-
uration; for Draco, we encode the connectivity and vertex
positions only, quantized with 8 and 10 bits per vertex. This
mesh is taken from the Stanford 3D Scanning Repository.

4.3 Patch-Based Representations
Without the neural component, our representation can be stored as
a collection of square geometry images in a single, tightly packed
atlas. Two interesting points of comparison arise; (1) how does our
representation compare to a packed geometry image atlas; (2) how
does it compare against a neural representation of the atlas?

To perform the first of these benchmarks, we run multichart ge-
ometry images, where charts are packed into squares of a fixed res-
olution (32 × 32). For the second benchmark, we compare against a
neural-hybrid implicit networkwhich operates on Fourier encoded
𝑢𝑣 coordinates (with 𝐿 = 16) and a feature field. Feature vectors
are embedded on the corners of each square geometry image in the
atlas and are interpolated within each patch similar to our method.

In Figure 10, we display the size and quality of these two bench-
marks along with our method. Our method outperforms both of
these benchmarks in terms of both size and quality. Whereas the
ordinary atlas representation becomes comparable to our method
with more charts, we observe that its neural counterpart struggles
overall. We believe this is largely due to the numerous discontinu-
ities along chart boundaries on the atlas. The difference in chart
and patch boundary characteristics for a neural multichart geom-
etry image and a neural geometry field is to note. In the former,
these boundaries are typically discontinuous, whereas in our rep-
resentation these boundaries are necessarily continuous.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Venkataram Sivaram, Ravi Ramamoorthi, and Tzu-Mao Li
X
Y
Z

RefeRence OuRs (2.5K patches)

Render / Normal 1.74 · 10−3 / 2.42 · 10−2

RefeRence
OuRs

(20× CompRession)

QSlim nvdiffmodeling
(20× CompRession) (20× CompRession)

QSlim (Equal size) nvdiffmodeling (Equal size)

4.53 · 10−4 / 1.38 · 10−2 4.26 · 10−4 / 1.73 · 10−2

Ei
ns
te
in

RefeRence OuRs (2.5K patches)

Render / Normal 2.73 · 10−4 / 6.51 · 10−3

RefeRence
OuRs

(45× CompRession)

QSlim nvdiffmodeling
(45× CompRession) (45× CompRession)

QSlim (Equal size) nvdiffmodeling (Equal size)

8.78 · 10−4 / 2.07 · 10−2 6.30 · 10−4 / 1.60 · 10−2

G
an

es
ha

RefeRence OuRs (2.5K patches)

Render / Normal 1.66 · 10−4 / 4.38 · 10−3 RefeRence
OuRs

(130× CompRession)

QSlim nvdiffmodeling
(130× CompRession) (130× CompRession)

QSlim (Equal size) nvdiffmodeling (Equal size)

2.17 · 10−3 / 2.42 · 10−2 1.73 · 10−3 / 1.93 · 10−2

20 40 60

10−3.5

10−3

CompRession

RendeR

20 40 60
10−5

10−4

10−3

CompRession

ChamfeR
XYZ

OuRs QSlim nvdiffmodeling

50 100 150 200

10−3.5

10−3

CompRession

RendeR

50 100 150 200
10−5

10−4

10−3

CompRession

ChamfeR
Einstein

OuRs QSlim nvdiffmodeling

200 400 600

10−3.5

10−3

CompRession

RendeR

200 400 600

10−4

10−3

CompRession

ChamfeR
Ganesha

OuRs QSlim nvdiffmodeling

Figure 7: Mesh Compression (Pt. 2). Compressing high detail surface geometry with various methods. We visually compare
the results produced by our method at increasing patch counts against the meshes produced by QSlim [Garland and Heckbert
1997], and nvdiffmodeling [Hasselgren et al. 2021] at equal storage. Our recovers fine surface details even at compression
rates of over ×100. Visual metrics are based on the 𝐿1 loss. Above models are xyz ©Stanford 3D Scanning Repository, Einstein
©Thingi10k, and GanesHa ©peel3d.

Neural Geometry Fields For Meshes SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

ARmadillo RefeRence 4 Resolution

8 Resolution 16 Resolution

5 10 15
10−4

10−3

FeatuRe size

RendeR

5 10 15

10−2

10−1.5

FeatuRe size

NoRmal

5 10 15

10−4

10−3

FeatuRe size

ChamfeR

ARmadillo Lucy Einstein Bust

Figure 8: Tessellation Ablations. Neural geometry fields enable arbitrary level of detail with respect to the chosen tessella-
tion resolution. Above, we show how the quality of the uniformly sampled extracted mesh scales with the resolution for the
ARmadillo mesh. On the right, we also plot the visual and geometric metrics of reconstructed neural geometry fields for
resolutions 2 ≤ 𝑘 ≤ 16. We note that our choice to limit the maximal resolution to 𝑘 = 16 is influenced by the fact that these
metrics tend to plateau around this resolution. The mesh is credited to the Stanford 3D Scanning Repository.

Bust
RefeRence 5 FeatuRes 10 FeatuRes

20 FeatuRes 50 FeatuRes

20 40

10−4

10−3.8

10−3.6

FeatuRe size

RendeR

20 40

10−2.4

10−2.2

10−2

FeatuRe size

NoRmal

Bust ARmadillo Lucy NefeRtiti

Figure 9: Feature Ablations. The quality of surface reconstruction of our method improves as more data is allotted for the
feature vectors. Above, we show the visual effect of increasing feature vector size for the Bust model, for 𝐹 ∈ {5, 10, 20, 50}.
The plots on the right inform that, along with other models that we benchmarked, the visual metrics of our representation
do indeed improve with higher feature sizes. The Chamfer distance remains similar, since the vertex resolution is constant,
hence we omit it here. This model is courtesy of Thingi10K.

4.4 Runtime
Our optimization pipeline is implemented using PyTorch and relies
on nvdiffrast [Laine et al. 2020] for differentiable rasterization. In
Table 3, we analyze the runtime of this process by comparing the
GPU execution times reported by PyTorch; all evaluations are done
using an NVIDIA GeForce RTX 2080 Ti graphics card.

At the most expensive configuration, 2500 patches at a tessella-
tion resolution of 𝑘 = 16, mesh extraction still remains interactive.
The compression time, measured by the time taken to optimize our
representation, typically lies in the minutes for most scenes. We
find that this is a reasonable time to spend in comparison to the
quality that can be retrieved afterward. In the supplementary, we
also present a real-time rendering pipeline for rasterizing neural
geometry fields that incurs little additional memory overhead.

5 CONCLUSION
In this paper, we propose a novel compact neural representation
for discrete surface geometry. Our method effectively combines
previous work in signal representations with neural implicit func-
tions and mesh processing to produce state-of-the-art results. We

Table 3: Runtime. The table shows the time it takes to per-
form mesh extraction and optimization for our represen-
tation. Even at the most intensive configuration, the mesh
extraction process remain interactive. The training time for
our representation is comparable to previous neural meth-
ods.

Patches 𝑘 = 4 (ms) 𝑘 = 8 (ms) 𝑘 = 16 (ms) Training (min)
100 0.10 0.23 0.76 4
250 0.21 0.51 1.98 6
1000 0.51 1.97 8.14 8
2500 1.19 4.79 21.22 12

present a concrete and robust pipeline for constructing an overfit
instance of our representation to arbitrary surfaces, and demon-
strate that it outperforms previous baselines for compressingmeshes.

Limitations. The hybrid structure of neural geometry fields en-
ables it to effectively fill in the details embedded within each patch.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Venkataram Sivaram, Ravi Ramamoorthi, and Tzu-Mao Li

50 100 150 200 250 300 350 400

10−4

10−3

Size (KB)

C
ha

m
fe
r

Patch RepResentations

ngf
mcgim

neuRal-mcgim

Figure 10: Multichart Geometry Images. On the left, we com-
pare our method to using a multichart geometry image con-
sisting of square geometry images, and a neural implicit rep-
resenting the same atlas. Our method is better than both
these approaches in terms of both size and quality. On the
right, we display the 𝑥 component of a multichart atlas; the
discontinuities along patch boundariesmakes regression on
it more difficult.

However, when these patches are extremely scarce with respect to
the surface topology, our inverse rendering pipeline may fail to ap-
propriately reconstruct the basic form of the target mesh.

Future work. The representation we present here consists of a
bare minimum of extrinsic mesh data, V , and Q. It is possible to
additionally including normal vectors for each vertex, so that each
patch 𝜎 becomes a Bezier patch that better captures the curvature
on the target surface.

Additionally, whilewe present a low-cost rasterization algorithm
in the supplementary, we speculate that a similar pipeline can be
developed for raytracing. In particular, works for tessellation-free
[Thonat et al. 2021] and non-linear [Ogaki 2023] ray tracing have
enabled memory efficient ray tracers for detailed surfaces, a simi-
lar method can potentially be applied for neural geometry fields.

ACKNOWLEDGMENTS
Thisworkwas supported in part byNSF grants 2105806 and 2212085.
We also acknowledge gifts from Adobe, Google, Qualcomm and
Rembrand, the Ronald L. GrahamChair, and the UC SanDiego Cen-
ter for Visual computing. We would also like to thank the anony-
mous reviewers for their insightful suggestions.

REFERENCES
Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Representation
for Anti-Aliasing Neural Radiance Fields. In International Conference on Computer
Vision. 5855–5864.

Marcel Campen. 2017. Partitioning Surfaces into Quad Patches. In Eurographics Tuto-
rials.

Marcel Campen, David Bommes, and Leif Kobbelt. 2012. Dual loops meshing: quality
quad layouts on manifolds. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 4, 1–11.

Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. 2006. Rectangular
Multi-Chart Geometry Images. In Symposium of Geometry Processing. 181–190.

E. Catmull and J. Clark. 1978. Recursively generated B-spline surfaces on arbitrary
topological meshes. Computer-Aided Design 10, 6 (1978), 350–355.

Yun-Chun Chen, Vladimir Kim, Noam Aigerman, and Alec Jacobson. 2023. Neural
Progressive Meshes. In SIGGRAPH Conference Proceedings. 1–9.

Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio Marton, Federico Ponchio, and
Roberto Scopigno. 2004. Adaptive Tetrapuzzles: Efficient Out-of-Core Construc-
tion and Visualization of Gigantic Multiresolution Polygonal Models. ACM Trans-
actions on Graphics (TOG) 23, 3 (2004), 796–803.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. 1998. Appearance-Preserving
Simplification. In SIGGRAPH. 115–122.

Michael Deering. 1995. Geometry compression. In SIGGRAPH. 13–20.
Alexandros Doumanoglou, Petros Drakoulis, Nikolaos Zioulis, Dimitrios Zarpalas,

and Petros Daras. 2019. Benchmarking Open-Source Static 3DMesh Codecs for Im-
mersive Media Interactive Live Streaming. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems 9, 1 (2019), 190–203.

Nira Dyn, David Levine, and John A. Gregory. 1990. A Butterfly Subdivision Scheme
for Surface Interpolation with Tension Control. ACM Transactions on Graphics
(TOG) 9, 2 (1990), 160–169.

Frank Galligan, Michael Hemmer, Ondrej Stava, Fan Zhang, and Jamieson Brettle.
2018. Google/draco: a library for compressing and decompressing 3D geometric
meshes and point clouds. https://github.com/google/draco.

William Gao, April Wang, Gal Metzer, Raymond A Yeh, and Rana Hanocka. 2022.
TetGAN: A Convolutional Neural Network for Tetrahedral Mesh Generation. In
Proceedings British Machine Vision Conference.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric
Error Metrics. In SIGGRAPH. 209–216.

Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. 2002. Geometry Images. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 21, 3 (2002), 355–361.

Stefan Gumhold and Wolfgang Straßer. 1998. Real Time Compression of Triangle
Mesh Connectivity. In SIGGRAPH. 133–140.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2019. MeshCNN: a network with an edge. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 38, 4 (2019).

Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine.
2021. Appearance-Driven Automatic 3D Model Simplification. In Eurographics
Symposium on Rendering. 85–97.

Hugues Hoppe. 1996. Progressive Meshes. In SIGGRAPH. 99–108.
Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John Mc-

Donald, Jean Schweitzer, and Werner Stuetzle. 1994. Piecewise smooth surface
reconstruction. In SIGGRAPH. 295–302.

Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang
Mu, and Ralph R Martin. 2022. Subdivision-based mesh convolution networks.
ACM Trans. Graph. 41, 3 (2022), 25:1–25:16.

Benjamin T Jones, Michael Hu, Milin Kodnongbua, Vladimir G Kim, and Adriana
Schulz. 2023. Self-supervised representation learning for CAD. In Computer Vi-
sion and Pattern Recognition. 21327–21336.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-
tion. In International Conference on Learning Representations.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular primitives for high-performance differentiable rendering.
ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6, Article 194 (2020), 11-14 pages.

Aaron Lee, HenryMoreton, and Hugues Hoppe. 2000. Displaced Subdivision Surfaces.
In SIGGRAPH. 85–94.

Eung-Seok Lee and Hyeong-Seok Ko. 2000. Vertex Data Compression for Triangular
Meshes. In Pacific Graphics. 225–234.

Thibault Lescoat, Hsueh-Ti Derek Liu, Jean-Marc Thiery, Alec Jacobson, Tamy
Boubekeur, and Maks Ovsjanikov. 2020. Spectral mesh simplification. Comput.
Graph. Forum (Proc. Eurographics) 39, 2 (2020), 315–324.

Zhaoshuo Li, Thomas Müller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-
Yu Liu, and Chen-Hsuan Lin. 2023. Neuralangelo: High-Fidelity Neural Surface
Reconstruction. In Computer Vision and Pattern Recognition. 8456–8465.

Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, and
Alec Jacobson. 2020b. Neural Subdivision. ACM Trans. Graph. (Proc. SIGGRAPH
Asia) 39, 4 (2020), 124:1–124:16.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020a.
Neural Sparse Voxel Fields. In Advances in Neural Information Processing Systems.

Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh,
and Jason Saragih. 2021. Mixture of volumetric primitives for efficient neural ren-
dering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 40, 4 (2021), 1–13.

Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Master’s thesis.
Department of Mathematics, The University of Utah.

AndreaMaggiordomo, HenryMoreton, andMarco Tarini. 2023. Micro-mesh construc-
tion. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 42, 4 (2023), 1–18.

AdrienMaglo, Guillaume Lavoué, Florent Dupont, and Céline Hudelot. 2015. 3DMesh
Compression: Survey, Comparisons, and Emerging Trends. Comput. Surveys 47, 3
(2015), 44:1–44:41.

Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,
and Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural
Scene Representation. ACMTrans. Graph. (Proc. SIGGRAPHAsia) 40, 4 (2021), 58:1–
58:13.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and An-
dreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function

https://github.com/google/draco

Neural Geometry Fields For Meshes SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Space. In Computer Vision and Pattern Recognition. 4460–4470.
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In European Conference on Computer Vision. 405–421.

Luca Morreale, Noam Aigerman, Paul Guerrero, Vladimir G. Kim, and Niloy J. Mitra.
2022. Neural Convolutional Surfaces. In Computer Vision and Pattern Recognition.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. (Proc. SIGGRAPH Asia) 41, 4 (2022), 102:1–102:15.

Shinji Ogaki. 2023. Nonlinear Ray Tracing for Displacement and Shell Mapping. In
SIGGRAPH Asia Conference Proceedings. Article 93, 10 pages.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation. In Computer Vision and Pattern Recognition. 165–174.

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, Marco Tarini, et al.
2021. Reliable feature-line driven quad-remeshing. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia) 40, 4 (2021), 1–17.

Rolandos Alexandros Potamias, Stylianos Ploumpis, and Stefanos Zafeiriou. 2022.
Neural Mesh Simplification. In Computer Vision and Pattern Recognition. 18583–
18592.

Ravi Ramamoorthi and Pat Hanrahan. 2001. An efficient representation for irradiance
environment maps. SIGGRAPH Conference Proceedings, 497–500.

P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. 2003. Multi-Chart
Geometry Images. In Symposium of Geometry Processing. 146–155.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep
Marching Tetrahedra: AHybrid Representation for High-Resolution 3D Shape Syn-
thesis. In Advances in Neural Information Processing Systems, Vol. 34. 6087–6101.

Vincent Sitzmann, JulienMartel, Alexander Bergman, David Lindell, and GordonWet-
zstein. 2020. Implicit Neural Representations with Periodic Activation Functions.
In Advances in Neural Information Processing Systems, Vol. 33. 7462–7473.

Jos Stam. 1998. Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary
Parameter Values. In SIGGRAPH. 395–404.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
geometric level of detail: Real-time rendering with implicit 3D shapes. In Computer
Vision and Pattern Recognition. 11358–11367.

MatthewTancik, Pratul Srinivasan, BenMildenhall, Sara Fridovich-Keil, Nithin Ragha-
van, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. 2020.
Fourier features let networks learn high frequency functions in low dimensional
domains. InAdvances in Neural Information Processing Systems, Vol. 33. 7537–7547.

Marco Tarini, Nico Pietroni, Paolo Cignoni, Daniele Panozzo, and Enrico Puppo. 2010.
Practical quad mesh simplification. Comput. Graph. Forum (Proc. Eurographics) 29,
2 (2010), 407–418.

Gabriel Taubin and Jarek Rossignac. 1998. Geometric compression through topologi-
cal surgery. ACM Trans. Graph. 17, 2 (1998), 84–115.

Theo Thonat, Francois Beaune, Xin Sun, Nathan Carr, and Tamy Boubekeur. 2021.
Tessellation-free displacement mapping for ray tracing. 40, 6 (2021), 282:1–282:16.

Costa Touma and Craig Gotsman. 1998. Triangle mesh compression. In Graphics In-
terface. 26–34.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You Need. In
Advances in Neural Information Processing Systems. 6000–6010.

Luiz Velho and Denis Zorin. 2001. 4–8 Subdivision. Computer Aided Geometric Design
18, 5 (2001), 397–427.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. In Advances in Neural Information Processing Systems,
Vol. 34. 27171–27183.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural fields in visual computing and beyond. Comput. Graph. Forum (Proc. Euro-
graphics STAR) 41, 2 (2022), 641–676.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

	Abstract
	1 Introduction
	2 Previous Work
	3 Neural Geometry Fields
	3.1 Surface Partitioning
	3.2 Mesh Extraction
	3.3 Optimization

	4 Results
	4.1 Compression
	4.2 Evaluations
	4.3 Patch-Based Representations
	4.4 Runtime

	5 Conclusion
	Acknowledgments
	References

