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1 Monte Carlo PDE Methods

Recent Monte Carlo PDE methods [Sawhney and Crane 2020; Sawh-
ney et al. 2022] have demonstrated the possibility of solving certain
classes of PDEs using grid-free methods. Specifically, these PDEs
are of the form
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where a : Q@ —» Rand o : Q — Ry are scalar fields and w is a
vector field that is the gradient of a scalar field.

Under time-invariant conditions, it is possible to write Equation
3a similarly to the above. Recall that, under time-invariance, this
equation is:
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We take «, f, 5, D and P to be spatially varying coefficients concern-
ing the primary variable E. It follows that:
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The terms corresponding to the fields in Equation 1 shown below:
o= (V-dg)+pP - (a—nll

In our method, Jg is approximately a potential flow, which is com-
pliant with the restrictions on w. The core issue that obstructs the
application of Monte Carlo PDE approaches to our problem lies
in the o coefficient. In Equation 1, it is required that o is strictly
non-negative. However, the corresponding term above does not nec-
essarily adhere to this. When ¢ becomes negative, the PDE becomes

a=9D, w=7ug
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a Helmholtz equation, for which there currently is no stable Monte
Carlo-based solver.

2 Glow Discharge Strand Generation

Our strand-generation algorithm is built on the observation that
the origins of Corona discharge filaments are concentrated where
there are surface imperfections, i.e. sharp edges and scratches. At a
high level, our pipeline evaluates a sharpness metric for each vertex,
samples vertices by the corresponding sharpness distribution, and
finally constructs strands extruding from the vertex and following
its normal vector.

For each vertex x, consider the set of face normals {n'} in its one-
ring. Our sharpness metric is measured as the sum of the variances
along each coordinate of the normal vectors:

3
S(v) = ) Var({n}}) ©

J=1

To avoid sampling flat regions, we mask out this sharpness value if

it is less than the mean S(v). Next, we normalize this distribution
to get a discrete probability distribution over all vertices. For each
sampled vertex v, we generate a strand as a Bezier curve originating
at v and extruding along the mean normal vector of the adjacent
faces. To add diversity to the resulting curves, we jitter the control
and end points of the curve. Figure 1 demonstrates the result of this
process on a particular mesh.

Generated strands

Heatmap and samples

Fig. 1. Generating glow discharge strands. Our strand generation al-
gorithm can reliably generate strands of glow discharge protruding from
an arbitrary mesh. We demonstrate this above for the FANDISK mesh. On
the left, we show a heatmap of the sharpness distribution over the mesh
along with the corresponding point samples. On the right, visualize the
completed strand; note that nearly all strands originate from a sharp edge.
Scene adapted from HorsEe STATUE 01 by Rico Cilliers ©Poly Haven
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Fig. 2. Denoising rendered outputs. To improve the fidelity of our denoised outputs, we feed the denoiser with auxiliary albedo and normal buffers. In
constrast with typical volumetric rendering settings, where assigning values to these buffers can be ambiguous, we use intersection tests with the active
regions of glow discharge to locate and evaluate normal vectors. Note that we set the albedo value to a zero valued vector.

3 Denoising Rendered Images

We use the Intel Open Image Denoise [Afra 2025] library to denoise
our rendered outputs. As with typical denoiser interfaces, users
are able to provide auxiliary buffers along with the base accumu-
lation buffer to provide more context to the denoiser. However, in
volumetric rendering, assigning values to auxiliary buffers, espe-
cially normal buffers, is ambiguous [Zhu et al. 2023]. Fortunately, in
our case, this decision simplified by the active region in each glow
discharge primitive. Specifically, for a given pixel, if the first inter-
section of the corresponding ray — not including the bounding box
of the glow discharge primitives — is the active region defined by the
primitives, then the normal vector at the active region is recorded
in the normal buffer. In such cases, we also assign a zero valued
vector to the albedo buffer. We show an example of this in Figure 2.
Since our glow discharge primitives have active regions specified by
level sets of Bezier curves, we use sphere tracing to pinpoint such
intersections and then compute the appropriate normal vectors.

4 Alternative Numerical Integrators
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Fig. 3. Using alternative numerical integrators. We compare our im-
plementation of Algorithm 1 using other numerical integration schemes
in place of forward Euler. Above, we show the comparison between ren-
dered results when using fourth order Runge-Kutta. While Runge-Kutta
takes more than three times as long to render 1024 samples, the difference
between these renderings is negligible.

While the numerical solver presented Algorithm 1 uses forward
Euler integration, our method is agnostic to the specific numerical
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integration scheme used. In Figure 3, we provide a comparison
between renderings using forward Euler and Runge-Kutta methods
(fourth order). Ultimately, the differences in the rendered outputs
between the different methods are minimal. However, the Runge-
Kutta variant takes significantly longer to render, which is why we
prefer using forward Euler.
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